Galois Groups of Purely Lacunary Polynomial Systems

Thomas Yahl tyahl@wisc.edu University of Wisconsin - Madison

Workshop on Computational Geometry, BIRS June 2024

An enumerative problem consists of:

- A parameter space \mathcal{P} .
- A solution space \mathcal{S} .
- An incidence space $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{S}$.

We will assume each of these spaces are algebraic varieties.

When an enumerative problem has finitely many smooth solutions for general parameters, the projection

$$\mathcal{I} \subseteq \mathcal{P} imes \mathcal{S} \ \pi \downarrow \mathcal{P}$$

restricts to a covering space over a Zariski open set.

The <u>Galois group</u> of an enumerative problem is monodromy group of the projection $\pi : \mathcal{I} \to \mathcal{P}$.

 Elements are permutations of a general fiber obtained by lifting based loops.

• By ordering the fiber, the Galois group is a subgroup of the symmetric group.

"Why Galois Groups?"

- The Galois group of an enumerative problem controls the ability to symbolically compute solutions in radicals.
- Partial knowledge of the Galois group can be used to reduce computation.
- Galois groups have been useful for analyzing problems in applications.
- They were objects of interest to Galois, Jordan, Hermite, Harris, and others.

We'll consider Galois groups of sparse polynomial systems.

- ('18) Esterov studied Galois groups of sparse systems to determine which sparse systems were solvable by radicals.
- ('20) Brysiewicz, Rodriguez, Sottile, and Y. wrote software exploiting Galois groups of sparse systems for solving.
- ('22) Brysiewicz and Burr utilized Galois groups of sparse systems in creating a sparse trace test.

Sparse polynomial systems are polynomial systems whose monomial structure has been predetermined.

- A (Laurent) monomial with exponent vector $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$ is $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.
- A (Laurent) polynomial f of support $\mathcal{A} \subseteq \mathbb{Z}^n$ has the form $f(x) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} x^{\alpha}, \ c_{\alpha} \in \mathbb{C}.$
- A sparse system of support $\mathcal{A}_{\bullet} = (\mathcal{A}_1, \dots, \mathcal{A}_n)$ is a system

$$F = (f_1, \ldots, f_n)$$

where f_i has support A_i for each $i = 1, \ldots, n$.

Example: Consider the supports $\mathcal{B}_{\bullet} = (\mathcal{B}_1, \mathcal{B}_2)$ depicted below.

A system F of support \mathcal{B}_{\bullet} has the form

$$F(x,y) = \begin{pmatrix} c_1 + c_2 x y^2 + c_3 x^2 y^2 \\ c_4 x + c_5 x y + c_6 y^2 \end{pmatrix}.$$

The number of zeros of a general system of support \mathcal{A}_{\bullet} is determined by the polyhedral structure of the supports.

The <u>mixed volume</u> $MV(\mathcal{C}_1, \ldots, \mathcal{C}_n)$ of a set of convex bodies $\mathcal{C}_1, \ldots, \mathcal{C}_n \subseteq \mathbb{R}^n$ is a measure of the size of the these sets.

• We write $MV(\mathcal{A}_{\bullet}) = MV(conv(\mathcal{A}_1), \dots, conv(\mathcal{A}_n))$

Theorem (Bernstein, Kushnirenko, Khovanskii) A sparse polynomial system F of support A_{\bullet} has at most $MV(A_{\bullet})$ smooth, isolated zeros in $(\mathbb{C}^{\times})^n$, and this bound is attained for a general system of support A_{\bullet} .

Sparse Polynomial Systems

Thus, for a general choice of coefficients $c_1, \ldots, c_6 \in \mathbb{C}$, the system

$$c_1 + c_2 x y^2 + c_3 x^2 y^2 = 0$$

$$c_4 x + c_5 x y + c_6 y^2 = 0$$

has 6 smooth, isolated zeros in $(\mathbb{C}^{\times})^2$.

Given supports \mathcal{A}_{\bullet} , we have:

- A parameter space $\mathcal{P}_{\mathcal{A}_{\bullet}} = \mathbb{C}^{\sum_{i} |\mathcal{A}_{i}|}$.
- A solution space $\mathcal{S} = (\mathbb{C}^{\times})^n$.
- An incidence correspondence

$$\mathcal{I}_{\mathcal{A}_{\bullet}} = \{ (F, x) \in \mathcal{P}_{\mathcal{A}_{\bullet}} \times \mathcal{S} : F(x) = 0 \}$$
$$\begin{array}{c} \pi \downarrow \\ \mathcal{P}_{\mathcal{A}_{\bullet}} \end{array}$$

 By the BKK theorem, π restricts to a MV(A_•)-sheeted covering space over a Zariski open set.

The <u>Galois group</u> $\mathcal{G}_{\mathcal{A}_{\bullet}}$ of the family of sparse polynomial systems of support \mathcal{A}_{\bullet} is the Galois group of this enumerative problem.

Galois groups can be approximated using numerical homotopy continuation software such as NAG4M2, Bertini, and HomotopyContinuation.jl.

Example: Consider our running example support \mathcal{B}_{\bullet} . A system of support \mathcal{B}_{\bullet} has the form

$$F(x,y) = \begin{pmatrix} c_1 + c_2 x y^2 + c_3 x^2 y^2 \\ c_4 x + c_5 x y + c_6 y^2 \end{pmatrix} = 0.$$

Tracking the zeros of a base system along various loops in $\mathcal{P}_{\mathcal{B}_{\bullet}}$ yields permutations which generate the symmetric group \mathcal{S}_{6} .

Open Problem: The inverse Galois problem for sparse polynomial systems: what are the groups that appear as the Galois group of a sparse polynomial system?

Open Problem: Given a sparse polynomial system, determine its Galois group.

- Esterov determined the supports \mathcal{A}_{\bullet} for which the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is the symmetric group.
- Esterov's result relies on two special classes of supports.

Open Problem: The inverse Galois problem for sparse polynomial systems: what are the groups that appear as the Galois group of a sparse polynomial system?

Open Problem: Given a sparse polynomial system, determine its Galois group.

- Esterov determined the supports \mathcal{A}_{\bullet} for which the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is the symmetric group.
- Esterov's result relies on two special classes of supports.

 \mathcal{A}_{\bullet} is <u>lacunary</u> if every system $F \in \mathcal{P}_{\mathcal{A}_{\bullet}}$ has been precomposed with a non-invertible surjective monomial map $\phi : (\mathbb{C}^{\times})^n \to (\mathbb{C}^{\times})^n$.

• This notion generalizes systems of the form $f(x^3) = 0$.

 \mathcal{A}_{\bullet} is <u>triangular</u> if every sparse system F of support \mathcal{A}_{\bullet} has a proper, nontrivial subsystem.

• This notion generalizes systems of the form f(x, y) = g(y) = 0.

Theorem (Esterov)

If \mathcal{A}_{\bullet} is not lacunary and not triangular, then the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is the symmetric group.

The standard argument:

- A small loop around the discriminant lifts to a simple transposition in $\mathcal{G}_{\mathcal{A}_{\bullet}}$.
- The Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is 2-transitive.

We will examine the Galois group $\mathcal{G}_{\mathcal{A}_\bullet}$ when \mathcal{A}_\bullet is lacunary.

Theorem (Esterov)

If \mathcal{A}_{\bullet} is not lacunary and not triangular, then the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is the symmetric group.

The standard argument:

- A small loop around the discriminant lifts to a simple transposition in $\mathcal{G}_{\mathcal{A}_{\bullet}}$.
- The Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is 2-transitive.

We will examine the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ when \mathcal{A}_{\bullet} is lacunary.

If \mathcal{A}_{\bullet} is lacunary, there is a support \mathcal{B}_{\bullet} and monomial map $\phi : (\mathbb{C}^{\times})^n \to (\mathbb{C}^{\times})^n$ such that for every $F \in \mathcal{P}_{\mathcal{A}_{\bullet}}$,

 $F = G \circ \phi$

for $G \in \mathcal{P}_{\mathcal{B}_{\bullet}}$ with the same coefficients.

- The support \mathcal{B}_{\bullet} is a <u>reduced support</u> for \mathcal{A}_{\bullet} . (We will always assume $MV(\mathcal{B}_{\bullet}) > 1$.)
- The kernel K = ker φ is a finite group which acts on the zeros of F by coordinate-wise multiplication.

Galois Groups of Sparse Polynomial Systems

Fix a general base system $F \in \mathcal{P}_{\mathcal{A}_{\bullet}}$.

• The zeros of F are partitioned into \mathcal{K} -orbits.

- The number of orbits is equal to m = MV(𝔅) and the size of each orbit is |𝔅|.
- The action of $\mathcal{G}_{\mathcal{A}_\bullet}$ commutes with the action of $\mathcal K$ and preserves these orbits.

That is, $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is imprimitive and the orbits form <u>blocks</u> of imprimitivity.

The wreath product $\mathcal{K} \wr \mathcal{S}_m$ consists of permutations that permute these blocks and in each block act by an element of \mathcal{K} .

• The Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is a subgroup of the wreath product $\mathcal{K} \wr \mathcal{S}_m$.

One may *expect* that the Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is equal to the wreath product $\mathcal{K} \wr \mathcal{S}_m$, but this is not necessarily the case!

Example: Consider the lacunary support \mathcal{A}_{\bullet} . The support \mathcal{B}_{\bullet} is a reduced support via the monomial map $\phi(x, y) = (x^2, y)$.

- The kernel K = ker φ = {(1,1), (-1,1)} partitions the zeros of a system F ∈ P_A, into 6 orbits of size 2.
- The Galois group G_{A_•} is a proper subgroup of the wreath product K ≥ S₆ of index 2.

The support \mathcal{A}_{\bullet} is purely lacunary if it is lacunary and not triangular.

Equivalently, A_• is purely lacunary if there is a reduced support
B_• where G_{B_•} is a symmetric group.

Example: The support \mathcal{A}_{\bullet} below is purely lacunary-our example support \mathcal{B}_{\bullet} is a reduced support, where $\mathcal{G}_{\mathcal{B}_{\bullet}} = \mathcal{S}_{6}$.

For purely lacunary supports \mathcal{A}_{\bullet} , there is an extension of the standard argument to determine $\mathcal{G}_{\mathcal{A}_{\bullet}}$.

- What happens if we lift a small loop around the discriminant?
 - $\circ\,$ A system in the discriminant now has many singular zeros.
 - $\circ~$ Lifting a small loop does \underline{not} produce a simple transposition.
- What is the analogue of 2-transitivity?
 - $\circ~\mathcal{G}_{\mathcal{A}_{\bullet}}$ is imprimitive and thus \underline{not} 2-transitive.

Proposition

Let \mathcal{A}_{\bullet} be purely lacunary with reduced support \mathcal{B}_{\bullet} such that $\mathcal{G}_{\mathcal{B}_{\bullet}}$ is a symmetric group. A small loop around the $(\mathcal{B}_{\bullet}$ -)discriminant lifts to a simple permutation <u>of blocks</u> in $\mathcal{G}_{\mathcal{A}_{\bullet}}$.

A general system F ∈ P_{A_•} in the (B_•-)discriminant has |K| singular zeros of multiplicity 2.

An imprimitive group \mathcal{G} acting on a set S is <u>k-block-transitive</u> if for every $s_1, \ldots, s_k \in S$ from distinct blocks and $t_1, \ldots, t_k \in S$ from distinct blocks, there exists $g \in \mathcal{G}$ such that $g \cdot s_i = t_i$ for all $i = 1, \ldots, k$.

- 1-block-transitivity is equivalent to transitivity.
- 2-block-transitivity is strictly weaker than 2-transitivity.

Proposition

If \mathcal{A}_{\bullet} is purely lacunary, then $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is 2-block-transitive with respect to the blocks induced by its reduced support.

- (Block-)Transitivity properties of G_{A_•} are encoded in fiber powers of the projection π : I_{A_•} → P_{A_•}.
- The result above follows by showing irreducibility of a certain component of the fiber square of the projection $\pi : \mathcal{I}_{\mathcal{A}_{\bullet}} \to \mathcal{P}_{\mathcal{A}_{\bullet}}$.

Any element of K ≥ S_m can be represented in the form
 (k₁,..., k_m, σ) ∈ K ≥ S_m for k₁,..., k_m ∈ K and σ ∈ S_m.

Define the map $\Sigma : \mathcal{K} \wr \mathcal{S}_m \to \mathcal{K}$ by

$$\Sigma((k_1,\ldots,k_m,\sigma))=\prod_{i=1}^m k_i.$$

Proposition

If \mathcal{G} is an imprimitive group which is 2-block-transitive and contains a simple transposition of blocks, then ker $\Sigma \subseteq \mathcal{G}$.

- Do all groups of this form appear as Galois groups of purely lacunary sparse systems?
 - The conjecture is, no.
 - $\circ~$ The condition $[\mathcal{H}:\mathcal{K}]\mid \mathsf{MV}(\mathcal{B}_{\bullet})$ seems to be necessary.
- Given \mathcal{A}_{\bullet} , can we determine the subgroup $\mathcal{H} \subseteq \mathcal{K}$?
 - $\circ\,$ Yes, there is a geometric realization of the map $\Sigma!$
 - $\circ~{\cal H}$ is the group of units that preserve a certain variety.

- Do all groups of this form appear as Galois groups of purely lacunary sparse systems?
 - The conjecture is, no.
 - $\circ~$ The condition $[\mathcal{H}:\mathcal{K}]\mid \mathsf{MV}(\mathcal{B}_{\bullet})$ seems to be necessary.
- Given \mathcal{A}_{\bullet} , can we determine the subgroup $\mathcal{H} \subseteq \mathcal{K}$?
 - $\circ~$ Yes, there is a geometric realization of the map $\Sigma!$
 - $\circ~{\cal H}$ is the group of units that preserve a certain variety.

- Do all groups of this form appear as Galois groups of purely lacunary sparse systems?
 - The conjecture is, no.
 - $\circ~$ The condition $[\mathcal{H}:\mathcal{K}]\mid \mathsf{MV}(\mathcal{B}_{\bullet})$ seems to be necessary.
- Given \mathcal{A}_{\bullet} , can we determine the subgroup $\mathcal{H} \subseteq \mathcal{K}$?
 - $\circ~$ Yes, there is a geometric realization of the map $\Sigma!$
 - $\circ~{\cal H}$ is the group of units that preserve a certain variety.

- Do all groups of this form appear as Galois groups of purely lacunary sparse systems?
 - The conjecture is, no.
 - $\circ~$ The condition $[\mathcal{H}:\mathcal{K}]\mid \mathsf{MV}(\mathcal{B}_{\bullet})$ seems to be necessary.
- Given \mathcal{A}_{\bullet} , can we determine the subgroup $\mathcal{H} \subseteq \mathcal{K}$?

• Yes, there is a geometric realization of the map Σ ! • \mathcal{H} is the group of units that preserve a certain variety

- Do all groups of this form appear as Galois groups of purely lacunary sparse systems?
 - The conjecture is, no.
 - $\circ~$ The condition $[\mathcal{H}:\mathcal{K}]\mid \mathsf{MV}(\mathcal{B}_{\bullet})$ seems to be necessary.
- Given \mathcal{A}_{\bullet} , can we determine the subgroup $\mathcal{H} \subseteq \mathcal{K}$?
 - $\circ~$ Yes, there is a geometric realization of the map $\Sigma!$
 - $\circ~\mathcal{H}$ is the group of units that preserve a certain variety.

Let $\mathcal{J}_{\mathcal{A}_{\bullet}}$ be any irreducible component of the variety

$$\{(F, x_1, \dots, x_{\mathsf{MV}(\mathcal{A}_{\bullet})}) \in \mathcal{P}_{\mathcal{A}_{\bullet}} \times \mathcal{S}^{\mathsf{MV}(\mathcal{A}_{\bullet})} : F(x_i) = 0 \text{ for } \forall i\}$$

that projects dominantly to $\mathcal{P}_{\mathcal{A}_{\bullet}}$ and is not contained in the diagonal.

A <u>deck transformation</u> of J_{A_●} → P_{A_●} is a birational automorphism of J_{A_●} fixing the fibers of J_{A_●} → P_{A_●}.

Proposition

The Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is equal to the group of deck transformations of $\mathcal{J}_{\mathcal{A}_{\bullet}} \to \mathcal{P}_{\mathcal{A}_{\bullet}}$, as groups of permutations of the zeros of a general system $F \in \mathcal{P}_{\mathcal{A}_{\bullet}}$.

For each block B_1, \ldots, B_m , let j_i be such that the j_i -th zero of the base system F lies in B_i .

Consider the map $\Pi:\mathcal{J}_{\mathcal{A}_\bullet}\to\mathcal{P}_{\mathcal{A}_\bullet}\times\mathcal{S}$ defined by

$$\Pi(F, x_1, \ldots, x_{\mathsf{MV}(\mathcal{A}_{\bullet})}) = \left(F, \prod_{i=1}^m x_{j_i}\right).$$

Proposition

The kernel ker $\Sigma \subseteq \mathcal{G}_{\mathcal{A}_{\bullet}}$ is equal to the subgroup of deck transformations of $\mathcal{J}_{\mathcal{A}_{\bullet}} \to \text{Im } \Pi$.

Corollary

The Galois group $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is equal to $\Sigma^{-1}(\mathcal{H})$ where $\mathcal{H} \subseteq \mathcal{K}$ is group of deck transformations of Im $\Pi \to \mathcal{P}_{\mathcal{A}_{\bullet}}$.

We can write down equations for $\mbox{Im}\,\Pi!$

- Recall given $F \in \mathcal{P}_{\mathcal{A}_{\bullet}}$, there is $G \in \mathcal{P}_{\mathcal{B}_{\bullet}}$ such that $F = G \circ \phi$.
- The product of the zeros of G is a rational function in the coefficients of F, p(F).

The variety Im $\Pi\subseteq \mathcal{P}_{\mathcal{A}_\bullet}\times \mathcal{S}$ is a dominant, irreducible component of the variety defined by

$$\phi(x)-p(F)=0.$$

Examples

Example: Consider the set of supports \mathcal{A}_{\bullet} obtained by scaling the first coordinate of our example supports \mathcal{B}_{\bullet} . The coefficients of each monomial appears next to the corresponding point below.

The variety Im Π is an irreducible component of the variety defined by

$$c_3^2 c_5^2 x^2 - c_1^2 c_4^2 = 0$$

$$c_3 c_4^2 y - c_1 c_5^2 = 0.$$

Example: This variety has two components that map dominantly to $\mathcal{P}_{\mathcal{A}_{\bullet}}$, defined by the systems below.

$$c_{3}c_{5}x - c_{1}c_{4} = 0 \qquad c_{3}c_{5}x + c_{1}c_{4} = 0$$

$$c_{3}c_{4}^{2}y - c_{1}c_{5}^{2} = 0 \qquad c_{3}c_{4}^{2}y - c_{1}c_{5}^{2} = 0$$

Both varieties have trivial group of deck transformations so that $\mathcal{G}_{\mathcal{A}_{\bullet}} = \Sigma^{-1}(\{e\}) = \ker \Sigma$, which has index 2 in the expected wreath product.

Examples

The variety $\text{Im }\Pi$ is the only dominant, irreducible component of the variety defined by

$$c_3^2 c_5^2 x^3 - c_1^2 c_4^2 = 0$$

$$c_3 c_4^2 y - c_1 c_5^2 = 0,$$

and $\mathcal{K} = \{(1, 1), (\omega, 1), (\omega^2, 1)\}$ acts on it. Thus, $\mathcal{G}_{\mathcal{A}_{\bullet}}$ is the expected wreath product.

- Can this structure be exploited to reduce computation?
- Is there a conjecture for the "purely triangular" case?
- Is there any hope to determine the Galois group for systems which are both lacunary and triangular?

Thank you for your attention!

Other Events:

- Macaulay2 Workshop Madison 2025. June 30-July 4, 2025.
- SIAM-AG 2025 Madison. June 7-11, 2025.