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Galois Groups of Enumerative Problems

An enumerative problem consists of:

• A parameter space P.

• A solution space S.

• An incidence space I ⊆ P × S.

We will assume each of these spaces are algebraic varieties.

When an enumerative problem has finitely many smooth solutions for

general parameters, the projection

I ⊆ P × S

P
π

restricts to a covering space over a Zariski open set.



Galois Groups of Enumerative Problems

The Galois group of an enumerative problem is monodromy group of

the projection π : I → P.

• Elements are permutations

of a general fiber obtained

by lifting based loops.

• By ordering the fiber, the

Galois group is a subgroup

of the symmetric group.



Galois Groups of Enumerative Problems

“Why Galois Groups?”

• The Galois group of an enumerative problem controls the ability

to symbolically compute solutions in radicals.

• Partial knowledge of the Galois group can be used to reduce

computation.

• Galois groups have been useful for analyzing problems in

applications.

• They were objects of interest to Galois, Jordan, Hermite, Harris,

and others.



Galois Groups of Enumerative Problems

We’ll consider Galois groups of sparse polynomial systems.

• (’18) Esterov studied Galois groups of sparse systems to

determine which sparse systems were solvable by radicals.

• (’20) Brysiewicz, Rodriguez, Sottile, and Y. wrote software

exploiting Galois groups of sparse systems for solving.

• (’22) Brysiewicz and Burr utilized Galois groups of sparse

systems in creating a sparse trace test.



Sparse Polynomial Systems

Sparse polynomial systems are polynomial systems whose monomial

structure has been predetermined.

• A (Laurent) monomial with exponent vector

α = (α1, . . . , αn) ∈ Zn is xα = xα1
1 · · · xαn

n .

• A (Laurent) polynomial f of support A ⊆ Zn has the form

f (x) =
∑

α∈A cαx
α, cα ∈ C.

• A sparse system of support A• = (A1, . . . ,An) is a system

F = (f1, . . . , fn)

where fi has support Ai for each i = 1, . . . , n.



Sparse Polynomial Systems

Example: Consider the supports B• = (B1,B2) depicted below.

B1 B2

A system F of support B• has the form

F (x , y) =

(
c1 + c2xy

2 + c3x
2y2

c4x + c5xy + c6y
2

)
.



Sparse Polynomial Systems

The number of zeros of a general system of support A• is determined

by the polyhedral structure of the supports.

The mixed volume MV(C1, . . . , Cn) of a set of convex bodies

C1, . . . , Cn ⊆ Rn is a measure of the size of the these sets.

• We write MV(A•) = MV(conv(A1), . . . , conv(An))

Theorem (Bernstein,Kushnirenko,Khovanskii)
A sparse polynomial system F of support A• has at most MV(A•)

smooth, isolated zeros in (C×)n, and this bound is attained for a

general system of support A•.



Sparse Polynomial Systems

Example: For the support B• in the previous example, MV(B•) = 6.

B1 B2

Thus, for a general choice of coefficients c1, . . . , c6 ∈ C, the system

c1 + c2xy
2 + c3x

2y2 = 0

c4x + c5xy + c6y
2 = 0

has 6 smooth, isolated zeros in (C×)2.



Galois Groups of Sparse Polynomial Systems

Given supports A•, we have:

• A parameter space PA• = C
∑

i |Ai |.

• A solution space S = (C×)n.

• An incidence correspondence

IA• = {(F , x) ∈ PA• × S : F (x) = 0}

PA•

π

• By the BKK theorem, π restricts to a MV(A•)-sheeted covering

space over a Zariski open set.

The Galois group GA• of the family of sparse polynomial systems of

support A• is the Galois group of this enumerative problem.



Galois Groups of Sparse Polynomial Systems

Galois groups can be approximated using numerical homotopy

continuation software such as NAG4M2, Bertini, and

HomotopyContinuation.jl.

Example: Consider our running example support B•. A system of

support B• has the form

F (x , y) =

(
c1 + c2xy

2 + c3x
2y2

c4x + c5xy + c6y
2

)
= 0.

Tracking the zeros of a base system along various loops in PB• yields

permutations which generate the symmetric group S6.



Galois Groups of Sparse Polynomial Systems

Open Problem: The inverse Galois problem for sparse polynomial

systems: what are the groups that appear as the Galois group of a

sparse polynomial system?

Open Problem: Given a sparse polynomial system, determine its

Galois group.

• Esterov determined the supports A• for which the Galois group

GA• is the symmetric group.

• Esterov’s result relies on two special classes of supports.
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Galois Groups of Sparse Polynomial Systems

A• is lacunary if every system F ∈ PA• has been precomposed with a

non-invertible surjective monomial map ϕ : (C×)n → (C×)n.

• This notion generalizes systems of the form f (x3) = 0.

A• is triangular if every sparse system F of support A• has a proper,

nontrivial subsystem.

• This notion generalizes systems of the form f (x , y) = g(y) = 0.



Galois Groups of Sparse Polynomial Systems

Theorem (Esterov)
If A• is not lacunary and not triangular, then the Galois group GA• is

the symmetric group.

The standard argument:

• A small loop around the discriminant lifts to a simple

transposition in GA• .

• The Galois group GA• is 2-transitive.

We will examine the Galois group GA• when A• is lacunary.
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Galois Groups of Lacunary Sparse Polynomial Systems

If A• is lacunary, there is a support B• and monomial map

ϕ : (C×)n → (C×)n such that for every F ∈ PA• ,

F = G ◦ ϕ

for G ∈ PB• with the same coefficients.

• The support B• is a reduced support for A•. (We will always

assume MV(B•) > 1.)

• The kernel K = ker ϕ is a finite group which acts on the zeros of

F by coordinate-wise multiplication.



Galois Groups of Sparse Polynomial Systems

Fix a general base system F ∈ PA• .

• The zeros of F are partitioned into K-orbits.

• The number of orbits is equal to m = MV(B•) and the size of

each orbit is |K|.

• The action of GA• commutes with the action of K and

preserves these orbits.

That is, GA• is imprimitive and the orbits form blocks of imprimitivity.



Galois Groups of Sparse Polynomial Systems

The wreath product K ≀ Sm consists of permutations that permute

these blocks and in each block act by an element of K.

• The Galois group GA• is a subgroup of the wreath product

K ≀ Sm.

One may expect that the Galois group GA• is equal to the wreath

product K ≀ Sm, but this is not necessarily the case!



Galois Groups of Sparse Polynomial Systems

Example: Consider the lacunary support A•. The support B• is a

reduced support via the monomial map ϕ(x , y) = (x2, y).

A1 A2

• The kernel K = ker ϕ = {(1, 1), (−1, 1)} partitions the zeros of a

system F ∈ PA• into 6 orbits of size 2.

• The Galois group GA• is a proper subgroup of the wreath

product K ≀ S6 of index 2.



Purely Lacunary Systems

The support A• is purely lacunary if it is lacunary and not triangular.

• Equivalently, A• is purely lacunary if there is a reduced support

B• where GB• is a symmetric group.

Example: The support A• below is purely lacunary–our example

support B• is a reduced support, where GB• = S6.

A1 A2



Purely Lacunary Systems

For purely lacunary supports A•, there is an extension of the

standard argument to determine GA• .

• What happens if we lift a small loop around the discriminant?

◦ A system in the discriminant now has many singular zeros.

◦ Lifting a small loop does not produce a simple transposition.

• What is the analogue of 2-transitivity?

◦ GA• is imprimitive and thus not 2-transitive.



Purely Lacunary Systems

Proposition
Let A• be purely lacunary with reduced support B• such that GB• is

a symmetric group. A small loop around the (B•-)discriminant lifts to

a simple permutation of blocks in GA• .

• A general system F ∈ PA• in the (B•-)discriminant has |K|
singular zeros of multiplicity 2.



Purely Lacunary Systems

An imprimitive group G acting on a set S is k-block-transitive if for

every s1, . . . , sk ∈ S from distinct blocks and t1, . . . , tk ∈ S from

distinct blocks, there exists g ∈ G such that g · si = ti for all

i = 1, . . . , k .

t2
s1

t1

s2

t2

• 1-block-transitivity is equivalent to transitivity.

• 2-block-transitivity is strictly weaker than 2-transitivity.



Purely Lacunary Systems

Proposition
If A• is purely lacunary, then GA• is 2-block-transitive with respect to

the blocks induced by its reduced support.

• (Block-)Transitivity properties of GA• are encoded in fiber

powers of the projection π : IA• → PA• .

• The result above follows by showing irreducibility of a certain

component of the fiber square of the projection π : IA• → PA• .



Purely Lacunary Systems

• Any element of K ≀ Sm can be represented in the form

(k1, . . . , km, σ) ∈ K ≀ Sm for k1, . . . , km ∈ K and σ ∈ Sm.

Define the map Σ : K ≀ Sm → K by

Σ((k1, . . . , km, σ)) =
m∏
i=1

ki .

Proposition
If G is an imprimitive group which is 2-block-transitive and contains a

simple transposition of blocks, then ker Σ ⊆ G.



Purely Lacunary Systems

Theorem (Y.)
If A• is purely lacunary, then the Galois group GA• contains the

kernel of the map Σ : K ≀ SMV(B•) → K. Thus, GA• = Σ−1(H) for

some subgroup H ⊆ K.

• Do all groups of this form appear as Galois groups of purely

lacunary sparse systems?

◦ The conjecture is, no.

◦ The condition [H : K] | MV(B•) seems to be necessary.

• Given A•, can we determine the subgroup H ⊆ K?

◦ Yes, there is a geometric realization of the map Σ!

◦ H is the group of units that preserve a certain variety.
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Purely Lacunary Systems

Let JA• be any irreducible component of the variety

{(F , x1, . . . , xMV(A•)) ∈ PA• × SMV(A•) : F (xi ) = 0 for ∀i}

that projects dominantly to PA• and is not contained in the diagonal.

• A deck transformation of JA• → PA• is a birational

automorphism of JA• fixing the fibers of JA• → PA• .

Proposition
The Galois group GA• is equal to the group of deck transformations

of JA• → PA• , as groups of permutations of the zeros of a general

system F ∈ PA• .



Purely Lacunary Systems

For each block B1, . . . ,Bm, let ji be such that the ji -th zero of the

base system F lies in Bi .

Consider the map Π : JA• → PA• × S defined by

Π(F , x1, . . . , xMV(A•)) =

(
F ,

m∏
i=1

xji

)
.

Proposition
The kernel ker Σ ⊆ GA• is equal to the subgroup of deck

transformations of JA• → ImΠ.

Corollary
The Galois group GA• is equal to Σ−1(H) where H ⊆ K is group of

deck transformations of ImΠ → PA• .



Purely Lacunary Systems

We can write down equations for ImΠ!

• Recall given F ∈ PA• , there is G ∈ PB• such that F = G ◦ ϕ.

• The product of the zeros of G is a rational function in the

coefficients of F , p(F ).

The variety ImΠ ⊆ PA• × S is a dominant, irreducible component of

the variety defined by

ϕ(x)− p(F ) = 0.



Examples

Example: Consider the set of supports A• obtained by scaling the

first coordinate of our example supports B•. The coefficients of each

monomial appears next to the corresponding point below.

c1

c2 c3 c4

c5

c6

A1 A2

The variety ImΠ is an irreducible component of the variety defined by

c23c
2
5x

2 − c21c
2
4 = 0

c3c
2
4y − c1c

2
5 = 0.



Examples

Example: This variety has two components that map dominantly to

PA• , defined by the systems below.

c3c5x − c1c4 = 0

c3c
2
4y − c1c

2
5 = 0

c3c5x + c1c4 = 0

c3c
2
4y − c1c

2
5 = 0

Both varieties have trivial group of deck transformations so that

GA• = Σ−1({e}) = ker Σ, which has index 2 in the expected wreath

product.



Examples

Example: If we had precomposed with the monomial map

ϕ(x , y) = (x3, y) to obtain the following support A•:

c1

c2 c3 c4

c5

c6

A1 A2

The variety ImΠ is the only dominant, irreducible component of the

variety defined by

c23c
2
5x

3 − c21c
2
4 = 0

c3c
2
4y − c1c

2
5 = 0,

and K = {(1, 1), (ω, 1), (ω2, 1)} acts on it. Thus, GA• is the

expected wreath product.



Some Remaining Questions

• Can this structure be exploited to reduce computation?

• Is there a conjecture for the “purely triangular” case?

• Is there any hope to determine the Galois group for systems

which are both lacunary and triangular?



Thank You!

Thank you for your attention!

Other Events:

• Macaulay2 Workshop - Madison 2025. June 30-July 4, 2025.

• SIAM-AG 2025 - Madison. June 7-11, 2025.


