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Neural Networks

o A (feedforward) neural network Fg : R% — R is a composition

of linear maps A; : R%-1 — R% and non-linear maps
@F & RY — Rdi,

Fo(x) = (ALooi—10A_10---0Ar 001 0 Ar)(x).

o The non-linear maps o; : R% — R% are coordinate-wise
applications of a fixed function called the activation function.

o A neural network is parameterized by 8 = (Ay,..., AL).

e The architecture of the neural network Fg is the sequence
d=(do,...,dp).



Neural Networks

Common activation functions in applications are:
e Rectified Linear Unit: R(x) = max{x, 0}
eX

e<+1

e Sigmoid function: S(x) =

e Gaussian Error Linear Unit:

G(x) = % [1 + tanh (\/E(X + 0.044715x3)>]

We will work with polynomial neural networks, whose activation

function are given by power functions, o(x) = x".

o The degree r is called the activation degree.




Polynomial Neural Networks

Given an architecture d = (dp, ..., d;) and activation function
o(x) = x", the parameter map

de : RdLXdL_l N Rdlxdo N (SymrLfl(RdO))dL
is defined on the input 8 = (Ay,...,AL) by Vg4 ,(0) = Fo.

Definition
The neurovariety Vqg , is the Zariski closure of the image of Wy ,.

e The neurovariety Vg , is the closure of the set of functions that
are representable as a neural network Fg with architecture d and

activation function o(x) = x".



Polynomial Neural Networks

Example: Consider the architecture d = (2,2, 3) and activation
function o(x) = x2. In this setting, writing @ = (A, B), a polynomial
neural network Fg has the form

bo1(a11x + a12y)? + baa(a2ix + any)?

N bi1(a11x + a12y)? + b1a(a21x + axny)?
F(X_y):BO'A( ) =
b31(a11x + a12y)? + bsa(axix + any)?

Thus, Vg, : R2¥2 x R2X3 — (Sym,(R2))3 = R? is defined by
Vg (0) = (b11aly + b12a3;, birat1aiz + broasian, bi1ad, + b12ady, . .. ).

The corresponding neurovariety V(23)2 € (Sym,(R?))3 =R% is a
hypersurface defined by

732527 — 202627 — 232428 + 212628 + 202429 — 212529 = 0.



Polynomial Neural Networks

e The dimension dim Vg , is a meausure of the expressivity.

e From a parameter count, there is an expected dimension

L1 L-1
-1
edim Vg, = min {dL + Z diy1(di —1),dL (do +rrL_1 ) } .

i=0
d\r [2]3]4
(2,:2,2)
(232) | 6| 8|9
(453) [ 2930303030
(3,5,6) | 35|40 |40 | 40 | 40
(23,22)| 8 |10 |11 |11 |11

Figure 1: Table of dimensions of small neurovarieties



Polynomial Neural Networks

Theorem (Alexander,Hirschowitz)
If d = (do, dq,1), then dim V4, = edim Vg , except in the following

cases:
e r=22<d; <dy—1
e r=3,dy=5d =7
e r=4,dy=3,dp=5
e r=4,dy=4,d =9
e r=4,dy=5,d =15

Conjecture (Kileel, Trager,Bruna)
For all architectures d, there exists r = r(d) such that for r > r,

dimVy , =edimVy ,.



Activation Thresholds

Definition
The activation threshold ActThr(d) of an architecture d, if it exists,

is the smallest number r = ActThr(d) such that if r > r, then

dimVy , = edimVy ,.

Theorem (Finkel,Rodriguez, Wu,Y.)
For all architectures d, the activation threshold ActThr(d) exists and

is bounded above by
ActThr(d) < 8(2maxd — 1)* — 1.

e Our bounds on the activation threshold are derived from results

on Waring's problem in number theory.



Activation Thresholds

Example: Consider the architecture d = (3,2, 3,2). The dimension
and expected dimension of the neurovariety Vg4 , are computed below
for various values of r.

r 213|456
dim | 10 | 12 | 13 | 13 | 13
edim | 13 | 13 | 13 | 13 | 13

e The activation degree is bounded above by ActThr(d) < 199,
but it appears that the dimensions stabilize for r > 3.



Activation Thresholds

e An architecture d = (db, ..., d;) is equi-width if
dp = d; = --- = d; and non-increasing if dyp > d; > --- > d.

Theorem
Ifd = (do,...,d.) is an equi-width architecture with d; > 1, then

ActThr(d) = 1. That is, if r > 1, then dimVy , = edim Vy ,.

Conjecture (Kubjas,Li,Wiesmann)
If d = (do,...,dL) is a non-increasing architecture with d; > 1, then

ActThr(d) = 1. Thatis, if r > 1, then dim Vg, = edim Vg ,.



Activation Thresholds

Open Problems!

e How to compute better bounds for the activation threshold of an

architecture?

e How to compute the exact activation threshold of an

architecture?

e Are there generalizations of activation threshold to other
activation functions that depend on parameters?
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Neural Networks

There are several well celebrated universal approximation theorems:

Theorem
A continuous function o : R — R is not a polynomial if and only if

for every continuous function f : R% s R% compact set C, and
€ > 0, there exists di > 1 and a neural network Fg with architecture
d = (do, d1, d») and activation function o such that

sup [|f(x) — Fe(x)|| <e.
xeC

e So why bother considering polynomial neural networks?

o It may not be possible to a priori compute a sufficient width dj.

o Not every continuous function may need to be approximated for a
given application—more specific tools have more specific uses.



