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Neural Networks

• A (feedforward) neural network Fθ : Rd0 → RdL is a composition

of linear maps Ai : Rdi−1 → Rdi and non-linear maps

σi : Rdi → Rdi ,

Fθ(x) = (AL ◦ σL−1 ◦ AL−1 ◦ · · · ◦ A2 ◦ σ1 ◦ A1)(x).

◦ The non-linear maps σi : Rdi → Rdi are coordinate-wise

applications of a fixed function called the activation function.

◦ A neural network is parameterized by θ = (A1, . . . ,AL).

• The architecture of the neural network Fθ is the sequence

d = (d0, . . . , dL).



Neural Networks

Common activation functions in applications are:

• Rectified Linear Unit: R(x) = max{x , 0}

• Sigmoid function: S(x) =
ex

ex + 1
• Gaussian Error Linear Unit:

G (x) =
x

2

[
1 + tanh

(√
2

π
(x + 0.044715x3)

)]
We will work with polynomial neural networks, whose activation

function are given by power functions, σ(x) = x r .

◦ The degree r is called the activation degree.



Polynomial Neural Networks

Given an architecture d = (d0, . . . , dL) and activation function

σ(x) = x r , the parameter map

Ψd ,r : RdL×dL−1 × · · · × Rd1×d0 → (SymrL−1(Rd0))dL

is defined on the input θ = (A1, . . . ,AL) by Ψd ,r (θ) = Fθ.

Definition
The neurovariety Vd ,r is the Zariski closure of the image of Ψd ,r .

• The neurovariety Vd ,r is the closure of the set of functions that

are representable as a neural network Fθ with architecture d and

activation function σ(x) = x r .



Polynomial Neural Networks

Example: Consider the architecture d = (2, 2, 3) and activation

function σ(x) = x2. In this setting, writing θ = (A,B), a polynomial

neural network Fθ has the form

Fθ(x , y) = BσA

(
x

y

)
=

b11(a11x + a12y)
2 + b12(a21x + a22y)

2

b21(a11x + a12y)
2 + b22(a21x + a22y)

2

b31(a11x + a12y)
2 + b32(a21x + a22y)

2

 .

Thus, Ψd ,r : R2×2 × R2×3 → (Sym2(R2))3 = R9 is defined by

Ψd ,r (θ) = (b11a
2
11 + b12a

2
21, b11a11a12 + b12a21a22, b11a

2
12 + b12a

2
22, . . . ).

The corresponding neurovariety V(2,2,3),2 ⊆ (Sym2(R2))3 = R9 is a

hypersurface defined by

z3z5z7 − z2z6z7 − z3z4z8 + z1z6z8 + z2z4z9 − z1z5z9 = 0.



Polynomial Neural Networks

• The dimension dimVd ,r is a meausure of the expressivity.

• From a parameter count, there is an expected dimension

edimVd ,r = min

{
dL +

L−1∑
i=0

di+1(di − 1), dL

(
d0 + rL−1 − 1

rL−1

)}
.

d \r 2 3 4 5 6

(2,2,2) 6 6 6 6 6

(2,3,2) 6 8 9 9 9

(4,5,3) 29 30 30 30 30

(3,5,6) 35 40 40 40 40

(2,3,2,2) 8 10 11 11 11

Figure 1: Table of dimensions of small neurovarieties



Polynomial Neural Networks

Theorem (Alexander,Hirschowitz)
If d = (d0, d1, 1), then dimVd ,r = edimVd ,r except in the following

cases:

• r = 2, 2 ≤ d1 ≤ d0 − 1

• r = 3, d0 = 5, d1 = 7

• r = 4, d0 = 3, d1 = 5

• r = 4, d0 = 4, d1 = 9

• r = 4, d0 = 5, d1 = 15

Conjecture (Kileel,Trager,Bruna)
For all architectures d , there exists r̃ = r̃(d ) such that for r > r̃ ,

dimVd ,r = edimVd ,r .



Activation Thresholds

Definition
The activation threshold ActThr(d ) of an architecture d , if it exists,

is the smallest number r̃ = ActThr(d ) such that if r > r̃ , then

dimVd ,r = edimVd ,r .

Theorem (Finkel,Rodriguez,Wu,Y.)
For all architectures d , the activation threshold ActThr(d ) exists and

is bounded above by

ActThr(d ) ≤ 8 (2maxd − 1)2 − 1.

• Our bounds on the activation threshold are derived from results

on Waring’s problem in number theory.



Activation Thresholds

Example: Consider the architecture d = (3, 2, 3, 2). The dimension

and expected dimension of the neurovariety Vd ,r are computed below

for various values of r .

r 2 3 4 5 6

dim 10 12 13 13 13

edim 13 13 13 13 13

• The activation degree is bounded above by ActThr(d) ≤ 199,

but it appears that the dimensions stabilize for r > 3.



Activation Thresholds

• An architecture d = (d0, . . . , dL) is equi-width if

d0 = d1 = · · · = dL and non-increasing if d0 ≥ d1 ≥ · · · ≥ dL.

Theorem
If d = (d0, . . . , dL) is an equi-width architecture with dL > 1, then

ActThr(d ) = 1. That is, if r > 1, then dimVd ,r = edimVd ,r .

Conjecture (Kubjas,Li,Wiesmann)
If d = (d0, . . . , dL) is a non-increasing architecture with dL > 1, then

ActThr(d ) = 1. That is, if r > 1, then dimVd ,r = edimVd ,r .



Activation Thresholds

Open Problems!

• How to compute better bounds for the activation threshold of an

architecture?

• How to compute the exact activation threshold of an

architecture?

• Are there generalizations of activation threshold to other

activation functions that depend on parameters?
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Neural Networks

There are several well celebrated universal approximation theorems:

Theorem
A continuous function σ : R → R is not a polynomial if and only if

for every continuous function f : Rd0 → Rd2 , compact set C , and

ϵ > 0, there exists d1 > 1 and a neural network Fθ with architecture

d = (d0, d1, d2) and activation function σ such that

sup
x∈C

||f (x)− Fθ(x)|| < ϵ.

• So why bother considering polynomial neural networks?

◦ It may not be possible to a priori compute a sufficient width d1.

◦ Not every continuous function may need to be approximated for a

given application–more specific tools have more specific uses.


