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Lines in P3 on a cubic surface

• Cayley and Salmon showed there

are 27 distinct lines that lie on a

smooth cubic surface.

• Schläfli determined these lines lie

in a “remarkable configuration”

Remark: In the image above, all 27 lines are real!



Fano problems

• The Grassmanian G(r ,Pn) is the space of r–planes in Pn, a

projective variety of dimension (r + 1)(n − r).

• The Fano scheme of X ⊆ Pn is the subscheme of the

Grassmanian formed by the r–planes that lie on X .

• Example: The Fano scheme of lines in P3 on a smooth cubic

surface consists of 27 points in G(1,P3).

• We consider Fano schemes of general complete intersections.



Fano Problems

A complete intersection X ⊆ Pn of codimension s is defined by

polynomials F = (f1, . . . , fs) of some degrees d• = (d1, . . . , ds).

• A Fano scheme is classified by the data (r , n, d•) called its type.

• Denote the space of systems F by C(r ,n,d•).

• The Fano scheme of r–planes on the zero set X = V(F ) of
F ∈ C(r ,n,d•) is written Vr (F ).

• Example: The Fano scheme of lines in P3 on a cubic surface has

type (1, 3, (3)).



Fano problems

The expected dimension of a Fano scheme of type (r , n, d•) is

δ(r , n, d•) = (r + 1)(n − r)−
s∑

i=1

(
di + r

r

)
.

Theorem (Debarre,Manivel)
A general Fano scheme of type (r , n, d•) has dimension δ(r , n, d•) if

δ(r , n, d•) ≥ 0 and 2r ≤ n − s, and is empty otherwise.

A Fano problem is a tuple (r , n, d•) such that a general Fano scheme

of type (r , n, d•) is finite.

Example: The tuple (1, 3, (3)) is a Fano problem.



Examples

For a Fano problem (r , n, d•), the general Fano scheme has a fixed

cardinality called the degree of the Fano problem, deg(r , n, d•).

Debarre and Manivel give explicit formulas for this degree using

techniques from intersection theory.

r n d• deg(r , n, d•)

1 4 (2, 2) 16

1 3 (3) 27

2 6 (2, 2) 64

3 8 (2, 2) 256

1 7 (2, 2, 2, 2) 512

1 6 (2, 2, 3) 720



Galois groups of Fano problems

There is an incidence correspondence.

Γ = {(F , ℓ) ∈ C(r ,n,d•) ×G(r ,Pn) : ℓ ∈ Vr (F )}
π(r ,n,d•)

C(r ,n,d•)

• The Galois group G(r ,n,d•), of the

Fano problem (r , n, d•) is the

monodromy group of π(r ,n,d•).

• Called “Galois groups” since

Jordan defined them

algebraically!



Galois groups of Fano problems

A complete classification of Galois groups of Fano problems is close!

• G(1,3,(3)) = E6 [Jordan],[Harris].

• G(r ,2r+2,(2,2)) = D2r+3 for r ≥ 1 [Hashimoto,Kadets].

• If (r , n, d•) is a Fano problem not equal to (1, 3, (3)) or

(r , 2r + 2, (2, 2)) for r ≥ 1, then G(r ,n,d•) contains the

alternating group [Hashimoto,Kadets].

Goal: Prove that for Fano problems not equal to (1, 3, (3)) or

(r , 2r + 2, (2, 2)) for r ≥ 1, the Galois group is the symmetric group.



Harris’ trick

To show some Galois groups contain a simple transposition, Harris

exhibited a system F such that:

1. Vr (F ) contains a unique double point.

2. Vr (F ) contains deg(1, n, (2n − 3))− 2

smooth points.

More specific plan: Find such systems for other Fano problems using

computational tools.



Harris’ trick

We prescribe a subscheme of Vr (F ) to choose F ∈ C(r ,n,d•).

• Fix ℓ ∈ G(r ,Pn) to lie in Vr (F ).

• Fix a tangent vector at ℓ ∈ Vr (F ), v ∈ TℓVr (F ).

Choose F general satisfying these properties.

A point x ∈ Cm is a simple double zero of a square polynomial

system G if G (x) = 0, kerDG (x) = ⟨v⟩ for v ̸= 0, and

D2G (x)(v , v) ̸∈ imDG (x).

Simple double zeros are isolated zeros of multiplicity 2.



Harris’ trick

The Krawczyk operator KG ,x ,Y acts on the space of complex

intervals, given a square system G , x ∈ Cm, and Y ∈ GLm(C).

Theorem (Krawczyk)
If G , x , Y , and I are such that

KG ,x ,Y (I ) ⊆ I ,

then I contains a zero of G .

• HomotopyContinuation.jl can find such complex intervals!



Results

Theorem (Y.)

The Fano problems not equal to (1, 3, (3)) or (r , 2r + 2, (2, 2)) for

r ≥ 1 and with less than 75,000 solutions have Galois group equal to

the symmetric group.

• This determines the Galois group of 12 Fano problems which

were previously unknown.

Data and code verifying this result is available at:

github.com/tjyahl/FanoGaloisGroups



Results

Timings are reported for verifying the simple double point and

certifying the remaining solutions is given below.

r n d• deg(r , n, d•) HomCo (s)

1 7 (2, 2, 2, 2) 512 .61

1 6 (2, 2, 3) 720 .87

2 8 (2, 2, 2) 1024 1.57

1 5 (3,3) 1053 .32

1 5 (2,4) 1280 .73

1 10 (2,2,2,2,2,2) 20480 15.44

1 9 (2,2,2,2,3) 27648 25.97

2 10 (2,2,2,2) 32768 36.67



Moving forward

There is more to do!

• (In progress) Generate and verify data for larger Fano problems.

Current bottlenecks are memory and time!

• Turn this into a proof for ALL Fano problems not equal to

(1, 3, (3)) or (r , 2r + 2, (2, 2)) for r ≥ 1.

• Explore using numerical certification to prove more about Galois

groups and beyond.
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Mathematische Annalen, 312:549–574, 1998.

J. Harris.

Galois groups of enumerative problems.

Duke Math. Journal, 46(4):685–724, 1979.



References ii

S. Hashimoto and B. Kadets.

38406501359372282063949 and all that: Monodromy of

Fano problems.
International Mathematics Research Notices, 2020.
rnaa275, arxiv:2002.04580.

C. Jordan.
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r n d• deg(r , n, d•) HomCo (s)

1 7 (2, 2, 2, 2) 512 .61

1 6 (2, 2, 3) 720 .87

2 8 (2, 2, 2) 1024 1.57

1 5 (3,3) 1053 .32

1 5 (2,4) 1280 .73

1 10 (2,2,2,2,2,2) 20480 15.44

1 9 (2,2,2,2,3) 27648 25.97

2 10 (2,2,2,2) 32768 36.67

1 8 (2,2,3,3) 37584 38.23

1 8 (2,2,2,4) 47104 111.88

1 7 (3,3,3) 51759 42.86

1 7 (2,3,4) 64512 125.63


