Computing Galois groups of Fano problems

Thomas Yahl thomasjyahl@tamu.edu Texas A&M University

JMM 2023

January 2023

arXiv:2209.07010

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"

Remark: In the image above, all 27 lines are real!

- The Grassmanian G(r, Pⁿ) is the space of r-planes in Pⁿ, a projective variety of dimension (r + 1)(n − r).
- The <u>Fano scheme</u> of X ⊆ Pⁿ is the subscheme of the Grassmanian formed by the r-planes that lie on X.
- Example: The Fano scheme of lines in P³ on a smooth cubic surface consists of 27 points in G(1, P³).
- We consider Fano schemes of general complete intersections.

A complete intersection $X \subseteq \mathbb{P}^n$ of codimension s is defined by polynomials $F = (f_1, \ldots, f_s)$ of some degrees $d_{\bullet} = (d_1, \ldots, d_s)$.

- A Fano scheme is classified by the data (r, n, d_{\bullet}) called its type.
- Denote the space of systems F by $\mathbb{C}^{(r,n,d_{\bullet})}$.
- The Fano scheme of r-planes on the zero set X = V(F) of F ∈ C^(r,n,d_•) is written V_r(F).
- Example: The Fano scheme of lines in \mathbb{P}^3 on a cubic surface has type (1, 3, (3)).

The expected dimension of a Fano scheme of type (r, n, d_{\bullet}) is

$$\delta(r, n, d_{\bullet}) = (r+1)(n-r) - \sum_{i=1}^{s} \binom{d_i + r}{r}.$$

Theorem (Debarre, Manivel) A general Fano scheme of type (r, n, d_{\bullet}) has dimension $\delta(r, n, d_{\bullet})$ if $\delta(r, n, d_{\bullet}) \ge 0$ and $2r \le n - s$, and is empty otherwise.

A Fano problem is a tuple (r, n, d_{\bullet}) such that a general Fano scheme of type (r, n, d_{\bullet}) is finite.

Example: The tuple (1, 3, (3)) is a Fano problem.

For a Fano problem (r, n, d_{\bullet}) , the general Fano scheme has a fixed cardinality called the degree of the Fano problem, deg (r, n, d_{\bullet}) .

Debarre and Manivel give explicit formulas for this degree using techniques from intersection theory.

r	п	d•	$\deg(r, n, d_{\bullet})$
1	4	(2,2)	16
1	3	(3)	27
2	6	(2,2)	64
3	8	(2,2)	256
1	7	(2, 2, 2, 2)	512
1	6	(2, 2, 3)	720

There is an incidence correspondence.

$$\Gamma = \{ (F, \ell) \in \mathbb{C}^{(r, n, d_{\bullet})} \times \mathbb{G}(r, \mathbb{P}^n) : \ell \in \mathcal{V}_r(F) \}$$

$$\underbrace{\frac{\pi_{(r, n, d_{\bullet})}}{\mathbb{C}^{(r, n, d_{\bullet})}}$$

- The <u>Galois group</u> G_(r,n,d_•), of the Fano problem (r, n, d_•) is the monodromy group of π_(r,n,d_•).
- Called "Galois groups" since Jordan defined them algebraically!

A complete classification of Galois groups of Fano problems is close!

- $\mathcal{G}_{(1,3,(3))} = E_6$ [Jordan],[Harris].
- $\mathcal{G}_{(r,2r+2,(2,2))} = D_{2r+3}$ for $r \ge 1$ [Hashimoto,Kadets].
- If (r, n, d_●) is a Fano problem not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for r ≥ 1, then G_(r,n,d_●) contains the alternating group [Hashimoto,Kadets].

<u>Goal</u>: Prove that for Fano problems not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for $r \ge 1$, the Galois group is the symmetric group.

To show some Galois groups contain a simple transposition, Harris exhibited a system F such that:

- 1. $\mathcal{V}_r(F)$ contains a unique double point.
- 2. $\mathcal{V}_r(F)$ contains deg(1, n, (2n-3)) 2 smooth points.

More specific plan: Find such systems for other Fano problems using computational tools.

We prescribe a subscheme of $\mathcal{V}_r(F)$ to choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$.

- Fix $\ell \in \mathbb{G}(r, \mathbb{P}^n)$ to lie in $\mathcal{V}_r(F)$.
- Fix a tangent vector at $\ell \in \mathcal{V}_r(F)$, $v \in T_\ell \mathcal{V}_r(F)$.

Choose F general satisfying these properties.

A point $x \in \mathbb{C}^m$ is a simple double zero of a square polynomial system G if G(x) = 0, ker $DG(x) = \langle v \rangle$ for $v \neq 0$, and

 $D^2G(x)(v,v) \notin \operatorname{im} DG(x).$

Simple double zeros are isolated zeros of multiplicity 2.

The Krawczyk operator $K_{G,x,Y}$ acts on the space of complex intervals, given a square system $G, x \in \mathbb{C}^m$, and $Y \in GL_m(\mathbb{C})$.

Theorem (Krawczyk)

If G, x, Y, and I are such that

$$K_{G,x,Y}(I) \subseteq I,$$

then I contains a zero of G.

• HomotopyContinuation.jl can find such complex intervals!

Theorem (Y.)

The Fano problems not equal to (1, 3, (3)) or (r, 2r + 2, (2, 2)) for $r \ge 1$ and with less than 75,000 solutions have Galois group equal to the symmetric group.

• This determines the Galois group of 12 Fano problems which were previously unknown.

Data and code verifying this result is available at:

github.com/tjyahl/FanoGaloisGroups

Timings are reported for verifying the simple double point and certifying the remaining solutions is given below.

r	n	d_{ullet}	$\deg(r, n, d_{\bullet})$	HomCo (s)
1	7	(2, 2, 2, 2)	512	.61
1	6	(2, 2, 3)	720	.87
2	8	(2, 2, 2)	1024	1.57
1	5	(3,3)	1053	.32
1	5	(2,4)	1280	.73
1	10	(2,2,2,2,2,2)	20480	15.44
1	9	(2,2,2,2,3)	27648	25.97
2	10	(2,2,2,2)	32768	36.67

There is more to do!

- (In progress) Generate and verify data for larger Fano problems. Current bottlenecks are memory and time!
- Turn this into a proof for ALL Fano problems not equal to (1,3,(3)) or (r,2r+2,(2,2)) for $r \ge 1$.
- Explore using numerical certification to prove more about Galois groups and beyond.

Thank you all for your time!

P. Breiding and S. Timme.

HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia.

In *International Congress on Mathematical Software*, pages 458–465. Springer, 2018.

O. Debarre and L. Manivel.

Sur la variété des espaces linéaires contenus dans une intersection complète.

Mathematische Annalen, 312:549–574, 1998.

J. Harris.

Galois groups of enumerative problems.

Duke Math. Journal, 46(4):685-724, 1979.

S. Hashimoto and B. Kadets.

38406501359372282063949 and all that: Monodromy of Fano problems.

International Mathematics Research Notices. 2020. rnaa275, arxiv:2002.04580.

C. Jordan.

Traité des Substitutions et des Équations algébriques. Gauthier-Villars. Paris. 1870.

r	п	d•	$\deg(r, n, d_{\bullet})$	HomCo (s)
1	7	(2, 2, 2, 2)	512	.61
1	6	(2, 2, 3)	720	.87
2	8	(2, 2, 2)	1024	1.57
1	5	(3,3)	1053	.32
1	5	(2,4)	1280	.73
1	10	(2,2,2,2,2,2)	20480	15.44
1	9	(2,2,2,2,3)	27648	25.97
2	10	(2,2,2,2)	32768	36.67
1	8	(2,2,3,3)	37584	38.23
1	8	(2,2,2,4)	47104	111.88
1	7	(3,3,3)	51759	42.86
1	7	(2,3,4)	64512	125.63