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Lines in P2 on a cubic surface

e Cayley and Salmon showed there
are 27 distinct lines that lie on a
smooth cubic surface.

e Schlafli determined these lines lie
in a “remarkable configuration”

Remark: In the image above, all 27 lines are real!



Fano problems

e The Grassmanian G(r,P") is the space of r—planes in P”, a
projective variety of dimension (r + 1)(n — r).

e The Fano scheme of X C P is the subscheme of the

Grassmanian formed by the r—planes that lie on X.

e Example: The Fano scheme of lines in P2 on a smooth cubic
surface consists of 27 points in G(1,P3).

e We consider Fano schemes of general complete intersections.



Fano Problems

A complete intersection X C P" of codimension s is defined by
polynomials F = (fi,...,fs) of some degrees do = (di,...,ds).

e A Fano scheme is classified by the data (r, n, d) called its type.

e Denote the space of systems F by C(rmde),

e The Fano scheme of r—planes on the zero set X = V(F) of
F € C(nmde) is written V,(F).

e Example: The Fano scheme of lines in P2 on a cubic surface has
type (1,3, (3))-



Fano problems

The expected dimension of a Fano scheme of type (r,n, d,) is

5(ryn,de) = (r+1)(n—r) _Z (di;i-r> .

i=1

Theorem (Debarre,Manivel)
A general Fano scheme of type (r, n, ds) has dimension §(r, n, ds) if

0(r,n,de) >0 and 2r < n—s, and is empty otherwise.

A Fano problem is a tuple (r, n, ds) such that a general Fano scheme
of type (r, n, d) is finite.

Example: The tuple (1,3,(3)) is a Fano problem.



For a Fano problem (r, n, d,), the general Fano scheme has a fixed
cardinality called the degree of the Fano problem, deg(r, n, d,).

Debarre and Manivel give explicit formulas for this degree using

techniques from intersection theory.

H r ‘ n ‘ de ‘ deg(r, n, ds) ‘
14| (22 16
1] 3 (3) 27
216 | (22 64
318 (22 256
1|7 ](2222) 512
16| (2,2.3) 720




Galois groups of Fano problems

There is an incidence correspondence.

[ = {(F,0) € C(rnmde) x G(r,P") : £ € V,(F)}
7T(r,n,d.)J

(C(r,n,d.)

e The Galois group G, n 4,), of the
Fano problem (r, n, d,) is the
monodromy group of m(, , 4,)-

e Called “Galois groups” since
Jordan defined them
algebraically!




Galois groups of Fano problems

A complete classification of Galois groups of Fano problems is close!
® G(13,3)) = Eo [Jordan],[Harris].
® G(r2r42,2,2)) = D2ry3 for r > 1 [Hashimoto,Kadets].

e If (r,n,d,) is a Fano problem not equal to (1,3, (3)) or
(r,2r +2,(2,2)) for r > 1, then G, , 4,) contains the
alternating group [Hashimoto,Kadets].

Goal: Prove that for Fano problems not equal to (1,3,(3)) or
(r,2r+2,(2,2)) for r > 1, the Galois group is the symmetric group.



To show some Galois groups contain a simple transposition, Harris
exhibited a system F such that:

1. V,(F) contains a unique double point. . >
2. V,(F) contains deg(1,n,(2n—3)) — 2 @

smooth points. l

More specific plan: Find such systems for other Fano problems using

computational tools.



We prescribe a subscheme of V,(F) to choose F € C(r:mds).

o Fix £ € G(r,P") to lie in V,(F).
e Fix a tangent vector at £ € V,(F), v € TyV,(F).

Choose F general satisfying these properties.

A point x € C™ is a simple double zero of a square polynomial
system G if G(x) =0, ker DG(x) = (v) for v # 0, and

D?G(x)(v,v) & im DG(x).

Simple double zeros are isolated zeros of multiplicity 2.




The Krawczyk operator K¢ « v acts on the space of complex
intervals, given a square system G, x € C™, and Y € GL,,(C).

Theorem (Krawczyk)
If G, x, Y, and [ are such that

Kexy(l) C 1,

then | contains a zero of G.

]

e HomotopyContinuation.jl can find such complex intervals!
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Theorem (Y.)

The Fano problems not equal to (1,3, (3)) or (r,2r + 2,(2,2)) for

r > 1 and with less than 75,000 solutions have Galois group equal to
the symmetric group.

e This determines the Galois group of 12 Fano problems which
were previously unknown.

Data and code verifying this result is available at:

github.com/tjyahl/FanoGaloisGroups



Timings are reported for verifying the simple double point and

certifying the remaining solutions is given below.

H r ‘ n ‘ de ‘ deg(r, n, d) ‘ HomCo (s) H
117 ] (2,2,22) 512 61
116 (223) 720 87
28| (222 1024 1.57
15 (3,3) 1053 32
1|5 (2,4) 1280 73
11101 (222.22,2) 20480 15.44
19| (22223) 27648 25.97
210 (2.222) 32768 36.67




Moving forward

There is more to do!

o (In progress) Generate and verify data for larger Fano problems.
Current bottlenecks are memory and time!

e Turn this into a proof for ALL Fano problems not equal to
(1,3,(3)) or (r,2r +2,(2,2)) for r > 1.

e Explore using numerical certification to prove more about Galois

groups and beyond.
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H r ‘ n de ‘ deg(r, n, d) ‘ HomCo (s) ‘
117 | (22,22 512 61
16| (223) 720 87
28| (2,22 1024 1.57
1] 5 (3.3) 1053 32
1|5 (2,4) 1280 73
11101 (22:222,2) 20480 15.44
1] 9| (22223) 27648 25.97
210 (2222) 32768 36.67
1| 8 (2,2,3,3) 37584 38.23
1|8 | (2224) 47104 111.88
1] 7| (333) 51750 42.86
1] 7| (234) 64512 125.63




