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Numerical homotopy continuation

Uses numerical methods to “track” solutions from a start system G
to a target system F .
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• Tracking can be done in (multi-)projective space to

accomodate for divergent paths.
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Sparse polynomial systems

Sparse polynomial systems are n polynomials in n variables whose

monomials for each polynomial are predetermined.

Example: F(t1, t2) =

(
1 + t1 + t2 + t1t2 + t2

1 t2 + t3
1 t2

1 + t2 + t1t2 + t2
1 t2

)

A1
A2

We say F has support A• = (A1,A2).



Sparse polynomial systems

• We are numerically solving for isolated solutions in (C×)n.

• By the BKK theorem, F has at most MV(A•) solutions.

The example system

F(t1, t2) =

(
1 + t1 + t2 + t1t2 + t2

1 t2 + t3
1 t2

1 + t2 + t1t2 + t2
1 t2

)

of support A• has at most MV(A•) = 3 solutions, but has exactly

1 isolated solution in (C×)2, (−1,−1).

• We can understand this deficiency by compactifying our

solution space.
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Toric Varieties

Given a polytope ∆, we can construct a toric variety X∆.

Polytope:

Total Space:

Base Locus B:

Group G :

X∆ P2

ω1

ω2

ω3

ω4

C4

V (x1, x3) ∪ V (x2, x4)

(C×)2

ω1

ω2

ω3

C3

V (x1, x2, x3) = {0}

C×

The coordinates on X∆ are called Cox coordinates. Points of

(C×)k embed as points with non-zero Cox coordinates.



Cox Coordinate Representatives

Points in X∆ correspond to orbits G · x for x ∈ Ck \ B.

By choosing a general affine space L ⊆ Ck \ B (of dimension n) we

may select 1 of degree many representatives.



Homogenization

• We can homogenize polynomials f to polynomials f̂ on a toric

variety X∆.

• We consider homogenizing to the toric variety associated to

the polytope ∆ =
∑

conv(Ai ).

Example: The homogenization F̂(x1, x2, x3, x4) of our system

F(t1, t2) has MV(A•) = 3 solutions, with Cox coordinates

{(−1,−1, 1, 1), (0,−1, 1, 1), (1,−1, 0, 1)}.

The first solution (−1,−1, 1, 1) to F̂ corresponds to the unique

solution (−1,−1) to F in (C×)2.
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Path Tracking and Endgame

From a start system G with the same support A• as F ,

homogenize to obtain a system Ĝ and its MV(A•) solutions in X∆.

After choosing an affine space L and representativs of the solutions

to Ĝ, apply path-tracking methods!

Some representatives may diverge (or move into the base locus B).

Endgame switches representatives as needed.



Cox Homotopy

Given a target system F with support A•, the Cox homotopy

follows the steps below.

1. Compute solutions to a start system G with the same support.

2. Homogenize to a system Ĝ on X∆.

3. Choose a generic affine space and compute representatives of

the start solutions.

4. Use numerical homotopy methods to track start solutions to

solutions of F̂ .
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Thank You!

Thank you everyone for listening!

And thank you to the organizers!


