Parameter Homotopies in Cox Coordinates

Thomas Yahl thomas jyahl@tamu.edu

Joint with Tim Duff, Simon Telen, Elise Walker arXiv:2012.04255

April 2022

Uses numerical methods to "track" solutions from a start system ${\cal G}$ to a target system ${\cal F}.$

Uses numerical methods to "track" solutions from a start system ${\cal G}$ to a target system ${\cal F}.$

• Tracking can be done in (multi-)projective space to accomodate for divergent paths.

<u>Sparse polynomial systems</u> are \underline{n} polynomials in \underline{n} variables whose monomials for each polynomial are predetermined.

Example:
$$\mathcal{F}(t_1, t_2) = \begin{pmatrix} 1 + t_1 + t_2 + t_1 t_2 + t_1^2 t_2 + t_1^3 t_2 \\ 1 + t_2 + t_1 t_2 + t_1^2 t_2 \end{pmatrix}$$

We say \mathcal{F} has support $\mathcal{A}_{\bullet} = (\mathcal{A}_1, \mathcal{A}_2)$.

• We are numerically solving for isolated solutions in $(\mathbb{C}^{\times})^n$.

- We are numerically solving for isolated solutions in $(\mathbb{C}^{\times})^n$.
- By the BKK theorem, ${\mathcal F}$ has at most $\mathsf{MV}({\mathcal A}_{\bullet})$ solutions.

- We are numerically solving for isolated solutions in $(\mathbb{C}^{\times})^n$.
- By the BKK theorem, \mathcal{F} has at most $MV(\mathcal{A}_{\bullet})$ solutions.

The example system

$$\mathcal{F}(t_1,t_2) = egin{pmatrix} 1+t_1+t_2+t_1t_2+t_1^2t_2+t_1^3t_2\ 1+t_2+t_1t_2+t_1^2t_2 \end{pmatrix}$$

of support \mathcal{A}_{\bullet} has at most $MV(\mathcal{A}_{\bullet}) = 3$ solutions, but has exactly 1 isolated solution in $(\mathbb{C}^{\times})^2$, (-1, -1).

- We are numerically solving for isolated solutions in $(\mathbb{C}^{\times})^n$.
- By the BKK theorem, \mathcal{F} has at most $MV(\mathcal{A}_{\bullet})$ solutions.

The example system

$$\mathcal{F}(t_1, t_2) = egin{pmatrix} 1+t_1+t_2+t_1t_2+t_1^2t_2+t_1^3t_2\ 1+t_2+t_1t_2+t_1^2t_2 \end{pmatrix}$$

of support \mathcal{A}_{\bullet} has at most $\mathsf{MV}(\mathcal{A}_{\bullet}) = 3$ solutions, but has exactly 1 isolated solution in $(\mathbb{C}^{\times})^2$, (-1, -1).

• We can understand this deficiency by compactifying our solution space.

Given a polytope Δ , we can construct a toric variety X_{Δ} .

The coordinates on X_{Δ} are called <u>Cox coordinates</u>. Points of $(\mathbb{C}^{\times})^k$ embed as points with non-zero Cox coordinates.

Points in X_{Δ} correspond to <u>orbits</u> $G \cdot x$ for $x \in \mathbb{C}^k \setminus B$.

By choosing a general affine space $L \subseteq \mathbb{C}^k \setminus B$ (of dimension *n*) we may select 1 of degree many representatives.

- We can homogenize polynomials f to polynomials \hat{f} on a toric variety X_{Δ} .
- We consider homogenizing to the toric variety associated to the polytope Δ = ∑ conv(A_i).

- We can <u>homogenize</u> polynomials f to polynomials \hat{f} on a toric variety X_{Δ} .
- We consider homogenizing to the toric variety associated to the polytope Δ = ∑ conv(A_i).

Example: The homogenization $\widehat{\mathcal{F}}(x_1, x_2, x_3, x_4)$ of our system $\mathcal{F}(t_1, t_2)$ has $MV(\mathcal{A}_{\bullet}) = 3$ solutions, with Cox coordinates

$$\{(-1, -1, 1, 1), (0, -1, 1, 1), (1, -1, 0, 1)\}.$$

The first solution (-1, -1, 1, 1) to $\widehat{\mathcal{F}}$ corresponds to the unique solution (-1, -1) to \mathcal{F} in $(\mathbb{C}^{\times})^2$.

From a start system \mathcal{G} with the same support \mathcal{A}_{\bullet} as \mathcal{F} , homogenize to obtain a system $\widehat{\mathcal{G}}$ and its $MV(\mathcal{A}_{\bullet})$ solutions in X_{Δ} .

After choosing an affine space *L* and representativs of the solutions to $\widehat{\mathcal{G}}$, apply path-tracking methods!

Some representatives may diverge (or move into the base locus B). Endgame switches representatives as needed.

1. Compute solutions to a start system ${\mathcal G}$ with the same support.

- 1. Compute solutions to a start system ${\mathcal G}$ with the same support.
- 2. Homogenize to a system $\widehat{\mathcal{G}}$ on X_{Δ} .

- 1. Compute solutions to a start system ${\mathcal G}$ with the same support.
- 2. Homogenize to a system $\widehat{\mathcal{G}}$ on X_{Δ} .
- 3. Choose a generic affine space and compute representatives of the start solutions.

- 1. Compute solutions to a start system ${\mathcal G}$ with the same support.
- 2. Homogenize to a system $\widehat{\mathcal{G}}$ on X_{Δ} .
- 3. Choose a generic affine space and compute representatives of the start solutions.
- 4. Use numerical homotopy methods to track start solutions to solutions of $\widehat{\mathcal{F}}.$

Thank you everyone for listening!

And thank you to the organizers!