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Lines in P3 on a cubic surface

• Cayley and Salmon showed there

are 27 distinct lines that lie on a

smooth cubic surface.

• Schläfli determined these lines lie

in a “remarkable configuration”

Remark: In the image above, all 27 lines are real!



Fano problems

• The Grassmanian G(r ,Pn) is the space of r–planes in Pn, a

projective variety of dimension (r + 1)(n − r).

• The Fano scheme of X is the subscheme of the Grassmanian

formed by the r–planes on X .

• Example: The Fano scheme of lines in P3 on a smooth cubic

surface consists of 27 points in G(1,P3).



Fano problems

We consider Fano schemes where X ⊆ Pn is a complete intersection

and classify them by their type.

• If codimX = s, X is defined by homogeneous polynomials

F = (f1, . . . , fs) of degrees d• = (d1, . . . , ds).

• The Fano scheme of r–planes on X has type (r , n, d•).

• Example: The Fano scheme of lines in P3 on a cubic surface has

type (1, 3, (3)).

We study the family of Fano schemes of a given type.



Fano problems

Write C(r ,n,d•) for the space of homogeneous polynomials

F = (f1, . . . , fs) in n + 1 variables of degrees d• = (d1, . . . , ds),

parameterizing Fano schemes of type (r , n, d•).

• For F ∈ C(r ,n,d•), write Vr (F ) for the Fano scheme of r–planes

on the zero set of F .

• A Fano scheme is general if it is determined by a general system

F ∈ C(r ,n,d•).

Many properties of general Fano schemes are determined entirely by

their type.



Fano problems

Note that ℓ ∈ Vr (F ) iff F |ℓ = 0. If ℓ ∈ Vr (F ) then..

• fi |ℓ = 0

• fi |ℓ is a polynomial of degree di in r variables (after choosing

coordinates).

• all ( di+r
r ) coefficients vanish.

The expected dimension of a Fano scheme of type (r , n, d•) is

δ(r , n, d•) = (r + 1)(n − r)−
s∑

i=1

(
di + r

r

)
.



Fano problems

Theorem (Debarre,Manivel)
A general Fano scheme of type (r , n, d•) has dimension δ(r , n, d•) if

δ(r , n, d•) ≥ 0 and 2r ≤ n − s, and is empty otherwise.

A Fano problem is a tuple (r , n, d•) such that a general Fano scheme

of type (r , n, d•) is finite.

For a Fano problem (r , n, d•), the general Fano scheme has a fixed

cardinality called the degree of the Fano problem, deg(r , n, d•).



Examples

Debarre and Manivel give explicit formulas for this degree via

techniques from intersection theory.

All Fano problems with less than 1000 solutions are listed below.

r n d• deg(r , n, d•)

1 4 (2, 2) 16

1 3 (3) 27

2 6 (2, 2) 64

3 8 (2, 2) 256

1 7 (2, 2, 2, 2) 512

1 6 (2, 2, 3) 720



Galois groups of Fano problems

There is an incidence correspondence.

Γ = {(F , ℓ) ∈ C(r ,n,d•) ×G(r ,Pn) : F |ℓ = 0}
π(r ,n,d•)

C(r ,n,d•) G(r ,Pn)

• Γ is a smooth, irreducible variety of dimension dimC(r ,n,d•).

• For F ∈ C(r ,n,d•) the fiber π−1
(r ,n,d•)

(F ) is the Fano scheme Vr (F ).

• π(r ,n,d•) is a smooth covering space over a Zariski open set U.



Galois groups of Fano problems

The Galois group G(r ,n,d•), of the Fano problem (r , n, d•) is the

monodromy group of π(r ,n,d•).

• The monodromy group of

π(r ,n,d•) is defined by lifting

loops in U based at a fixed

point F ∈ U.

• The monodromy group is

defined up to isomorphism.



Galois groups of Fano problems

Question: Why are these called Galois groups?

Answer: Jordan first defined them algebraically!

• π(r ,n,d•) is dominant and induces a

reverse inclusion of function fields.

• G(r ,n,d•) is isomorphic to the Galois

group GalC(C(r,n,d•))(C(Γ)).

Γ

C(r ,n,d•)

C(Γ)

C(C(r ,n,d•))

Equivalence of these definitions was shown by Harris, but the result

traces back to Hermite.



Galois groups of Fano problems

A complete classification of Galois groups of Fano problems is close!

• G(1,3,(3)) = E6 [Jordan],[Harris].

• G(1,n,(2n−3)) is the symmetric group for n ≥ 4 [Harris].

• G(r ,2r+2,(2,2)) = D2r+3 for r ≥ 1 [Hashimoto,Kadets].

• If (r , n, d•) is a Fano problem not equal to (1, 3, (3)) or

(r , 2r + 2, (2, 2)) for r ≥ 1, then G(r ,n,d•) contains the

alternating group [Hashimoto,Kadets].



Galois groups of Fano problems

Goal: Prove that for Fano problems not equal to (1, 3, (3)) or

(r , 2r + 2, (2, 2)) for r ≥ 1, the Galois group is the symmetric group.

Plan: Extend Harris’ method of proof by using computational tools.



Using Harris’ method

To show G(1,n,(2n−3)) contains a simple transposition, Harris exhibited

F ∈ C(1,n,(2n−3)) such that:

1. Vr (F ) contains a unique double point.

2. Vr (F ) contains deg(1, n, (2n − 3))− 2

smooth points.

More specific plan: Find such systems for other Fano problems using

computational tools.



Using Harris’ method

We prescribe a subscheme of Vr (F ) to choose F ∈ C(r ,n,d•).

• Fix ℓ ∈ G(r ,Pn) to lie in Vr (F ).

• Fix a tangent vector at ℓ ∈ Vr (F ), v ∈ TℓVr (F ).

Choose F ∈ C(r ,n,d•) general satisfying these conditions.

How do we check Harris’ conditions?



Using Harris’ method

Choose your favorite coordinates on G(r ,Pn) to describe Vr (F ) as

the zeros of a square polynomial system.

• Use symbolic computation to verify ℓ ∈ Vr (F ) is an isolated

point of multiplicity 2.

• Use numerical certification to isolate deg(r , n, d•)− 2 other

points of Vr (F ).

Note: By isolating deg(r , n, d•)− 2 points of Vr (F ) other than ℓ, the

other points are necessarily smooth!



Using Harris’ method

A point x ∈ Cm is a simple double zero of a square polynomial

system G if G (x) = 0, kerDG (x) = ⟨v⟩ for v ̸= 0, and

D2G (x)(v , v) ̸∈ imDG (x).

By work of Shub, simple double zeros are

isolated zeros of multiplicity 2.

Note: We can choose F ∈ C(r ,n,d•) (and hence G ) to have complex

rational coefficients. The above can be checked symbolically.



Using Harris’ method

Smale defined quantities α(G , x), β(G , x), and γ(G , x) to a square

system G and a point x ∈ Cm.

Theorem (Smale et al.)
If G and x are such that

α(G , x) <
13− 3

√
17

4
,

then x converges under iterations of the Newton operator to a

solution ξ of G . Further, ||x − ξ|| ≤ 2β(G , x).

• alphaCertified will verify these inequalities for you!



Using Harris’ method

The Krawczyk operator KG ,x ,Y acts on the space of complex

intervals, given a square system G , x ∈ Cm, and Y ∈ GLm(C).

Theorem (Krawczyk)
If G , x , Y , and I are such that

KG ,x ,Y (I ) ⊆ I ,

then I contains a zero of G .

• HomotopyContinuation.jl can find such complex intervals!



Results

Theorem (Y.)

The Fano problems not equal to (1, 3, (3)) or (r , 2r + 2, (2, 2)) for

r ≥ 1 and with less than 75,000 solutions have Galois group equal to

the symmetric group.

• This determines the Galois group of 12 Fano problems which

were previously unknown.

Data and code verifying this result is available at:

github.com/tjyahl/FanoGaloisGroups



Results

Timings are reported for verifying the simple double point and

certifying the remaining solutions is given below.

(alphaCertified,HomotopyContinuation.jl)

r n d• deg(r , n, d•) alCer (h) HomCo (s)

1 7 (2, 2, 2, 2) 512 2.66 .61

1 6 (2, 2, 3) 720 2.88 .87

2 8 (2, 2, 2) 1024 27.32 1.57

1 5 (3,3) 1053 2.69 .32

1 5 (2,4) 1280 6.09 .73

1 10 (2,2,2,2,2,2) 20480 - 15.44

1 9 (2,2,2,2,3) 27648 - 25.97

2 10 (2,2,2,2) 32768 - 36.67



Moving forward

There is more to do!

• (In progress) Generate and verify data for larger Fano problems.

Current bottlenecks are memory and time!

• Turn this into a proof for ALL Fano problems not equal to

(1, 3, (3)) or (r , 2r + 2, (2, 2)) for r ≥ 1.

• Explore using numerical certification to prove more about Galois

groups and beyond.
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r n d• deg(r , n, d•) alCer (h) HomCo (s)

1 7 (2, 2, 2, 2) 512 2.66 .61

1 6 (2, 2, 3) 720 2.88 .87

2 8 (2, 2, 2) 1024 27.32 1.57

1 5 (3,3) 1053 2.69 .32

1 5 (2,4) 1280 6.09 .73

1 10 (2,2,2,2,2,2) 20480 - 15.44

1 9 (2,2,2,2,3) 27648 - 25.97

2 10 (2,2,2,2) 32768 - 36.67

1 8 (2,2,3,3) 37584 - 38.23

1 8 (2,2,2,4) 47104 - 111.88

1 7 (3,3,3) 51759 - 42.86

1 7 (2,3,4) 64512 - 125.63


